
Year 6 Block E: Three 3-week units

Securing number facts, calculating, identifying relationships

Objectives		Units	
		2	3
Tabulate systematically the information in a problem or puzzle; identify and record the steps or calculations needed to solve it, using symbols where appropriate; interpret solutions in the original context and check their accuracy	✓	✓	✓
Explain reasoning and conclusions, using words, symbols or diagrams as appropriate	✓	✓	
Solve multi-step problems, and problems involving fractions, decimals and percentages; choose and use appropriate calculation strategies at each stage, including calculator use	✓		✓
 Use knowledge of place value and multiplication facts to 10 x 10 to derive related multiplication and division facts involving decimals (e.g. 0.8 x 7, 4.8 ÷ 6) 	✓		✓
Use efficient written methods to add and subtract integers and decimals, to multiply and divide integers and decimals by a one-digit integer, and to multiply two-digit and three-digit integers by a two-digit integer	✓		✓
Use a calculator to solve problems involving multi-step calculations	✓	✓	✓

Objectives		Units		
		2	3	
• Express a larger whole number as a fraction of a smaller one (e.g. recognise that 8 slices of a 5-slice pizza represents $^8/_5$ or 1 $^3/_5$ pizzas); simplify fractions by cancelling common factors; order a set of fractions by converting them to fractions with a common denominator	✓	√	✓	
Express one quantity as a percentage of another (e.g. express £400 as a percentage of £1000); find equivalent percentages, decimals and fractions		✓	✓	
• Relate fractions to multiplication and division (e.g. $6 \div 2 = \frac{1}{2}$ of $6 = 6 \times \frac{1}{2}$); express a quotient as a fraction or decimal (e.g. $67 \div 5 = 13.4$ or $13\frac{2}{5}$); find fractions and percentages of whole-number quantities (e.g. $\frac{5}{8}$ of 96, 65% of £260)	✓	√	✓	
Solve simple problems involving direct proportion by scaling quantities up or down	~	√	✓	

Speaking and listening objectives for the block

Objectives		Units		
		2	3	
Participate in a whole-class debate using the conventions and language of debate, including Standard English	✓			
Understand and use a variety of ways to criticise constructively and respond to criticism		✓		
Use a range of oral techniques to present persuasive arguments			✓	

Opportunities to apply mathematics in science

Activities		Units		
ACII	Activities		2	3
6b	Micro-organisms: When undertaking activities using yeast, e.g. bread making, calculate and compare proportions of ingredients	✓		
6c	More about dissolving: When dissolving different types of sugars, calculate the mass which dissolves per litre or millilitre		✓	
6h	Enquiry in environmental and technological contexts: When investigating dandelion growth, calculate proportion in different habitats			✓

Key aspects of learning: focus for the block

Enquiry	Problem solving	Reasoning	Creative thinking
Information processing	Evaluation	Self-awareness	Managing feeling
Social skills	Communication	Motivation	Empathy

Vocabulary

problem, solution, calculator, calculate, calculation, jotting, equation, operation, symbol, inverse, answer, method, strategy, explain, predict, reason, reasoning, pattern, relationship add, subtract, multiply, divide, sum, total, difference, plus, minus, product, quotient, remainder, multiple, common multiple, factor, divisor, divisible by

decimal fraction, decimal place, decimal point, percentage, per cent (%)

fraction, proper fraction, improper fraction, mixed number, numerator, denominator, unit fraction, equivalent, cancel

proportion, ratio, in every, for every, to every

Building on previous learning

Check that children can already:

- solve one-step and two-step problems involving whole numbers and decimals
- use understanding of place value to multiply and divide whole numbers and decimals by 10, 100 or 1000
- use efficient written methods to add and subtract whole numbers and decimals with up to two decimal places, to multiply HTU x U and TU x TU, and to divide TU ÷ U
- · find equivalent fractions
- understand percentage as the number of parts in every 100, and express tenths and hundredths as percentages
- use sequences to scale numbers up or down
- find simple fractions of percentages of quantities.

Year 6 Block E: Securing number facts, calculating, identifying relationships

Unit 1

Learning overview

Contained in this learning overview are suggested assessment opportunities linked to the assessment focuses within the Assessing Pupils' Progress (APP) guidelines. As you plan your teaching for this unit, draw on both these suggestions and alternative methods to help you to gather evidence of attainment or to identify barriers to progress that will inform your planning to meet the needs of particular groups of children. When you make a periodic assessment of children's learning, this accumulating evidence will help you to determine the level at which they are working. To gather evidence related to the three Ma1 assessment focuses (problem solving, reasoning and communicating) it is important to give children space and time to develop their own approaches and strategies throughout the mathematics curriculum, as well as through the application of skills across the curriculum.

In this unit the illustrated assessment focuses are:

- Ma1, Communicating
- Ma2, Written and calculator methods
- Ma2, Solving numerical problems.

Children recall multiplication and division facts and use these to **derive related facts** involving decimals, such as 8×0.9 or $3 \div 0.6$. They count on and back, for example, in steps of 0.3, relating the steps to the 3 times-table. They use their knowledge of number facts, relationships between numbers and relationships between operations to solve problems and puzzles such as:

Find two numbers with a product of 899.

Solve $3.2 \div y = 0.4$.

Using all the digits 2, 4, 5 and 8, place one in each box in the calculation $\Box\Box\Box \div\Box$ to make the smallest possible answer.

Write in the missing number: $32.45 \times \square = 253.11$

Children use **efficient written methods** to add, subtract, multiply and divide integers and decimal numbers. They calculate the answer to $HTU \div U$ or $U.t \div U$ to one or two decimal places, and solve problems such as:

Find the total length of three pieces of wood with lengths 167 cm, 2.8 m and 1008 mm. Find 78% of 14.8 m.

A tree trunk is 6.5 metres long. Frank cuts the tree trunk into four equal lengths. How long is each length?

Children choose methods to solve these problems efficiently, and consider the accuracy of the answer in the context of the problem.

Assessment focus: Ma2, Written and calculator methods

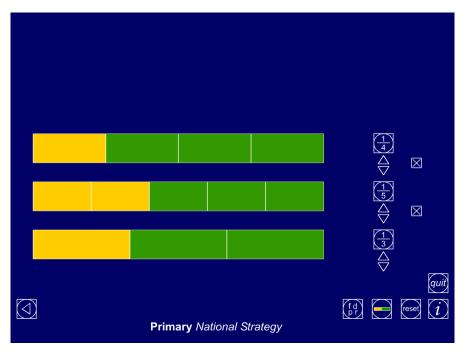
As they solve problems, look for evidence of the calculation methods children choose to use. Look out for children who use multiplication facts up to 10×10 and place value within their written methods of multiplication and division. Look for children who are beginning to use written methods to multiply or divide decimals by a single-digit number. Look for the ways in which children choose to calculate with fractions. Look at the examples for which they choose to use a written method, and other examples for which they use a calculator. Look for evidence of children recording the calculations they perform with a calculator and how they check their accuracy.

Children **tabulate information**, working systematically, to help them to solve problems and explain their conclusions. For example, they explore a problem such as:

In a village where all the roads are straight, every time two streets intersect a street lamp is required. Investigate the number of street lamps required for 2 streets, 3 streets, 4 streets, ...

What is the minimum and maximum number of lamps needed for 5 streets? n streets?

They explain their methods and reasoning, using symbols where appropriate.


Assessment focus: Ma1, Communicating

As they investigate situations, look for evidence of children recording results systematically, to help reveal patterns and gain insights into the situation. Look out for children considering how to record individual results to check more easily for repeats. For example, if children are finding all of the different solid cuboids that can be built with 72 linking cubes, look for those who list the dimensions of individual cuboids in size order, so that $2 \times 4 \times 9$ and $4 \times 2 \times 9$ are not listed as different results. Look for children who review results and put them into order to check for omissions. For example, with the cuboids, look for children who record their results beginning with $1 \times 1 \times 72$, $1 \times 2 \times 36$ and $1 \times 3 \times 24$. Notice those children who look for ways to record systematically from the outset.

Children **express a quotient as a fraction**, for example, $19 \div 8 = 2^3/_8$ or $3 \div 4 = ^3/_4$, simplifying the fraction where appropriate. They solve problems, giving their answers as a fraction, for example:

Share 9 pizzas equally between 4 people. Divide a 28 m length of wood into 6 equal pieces.

Children express a larger whole number as a fraction of a smaller one, using practical contexts or diagrams. For example, they compare a bag containing 10 grapes and a bag containing 25 grapes, grouping the 25 grapes into groups of 10 (with a group of 5) to establish that the larger bag contains $2^{1}/_{2}$ times as many grapes as the smaller bag. They **simplify fractions by cancelling** and use equivalent fractions to **compare one fraction with another**. For example, they use fraction strips to show that $\frac{1}{3}$ lies between $\frac{1}{4}$ and $\frac{2}{5}$.

Children find **fractions and simple percentages of amounts**, identifying the appropriate steps towards finding the answer. They solve problems involving fractions and percentages, using calculators where appropriate, and identifying and recording the calculations needed. For example:

A class contains 12 boys and 18 girls. What fraction of the class are boys? What percentage of the class are girls?

25% of the apples in a basket are red. The rest are green. There are 21 red apples. How many green apples are there?

Children build on their understanding of direct proportion to solve, for example:

This cup holds 40 ml. How many cups can I pour from a $\frac{1}{2}$ litre bottle?

They represent this problem as 40 ml $\times \square = 500$ ml.

They scale numbers up or down by converting recipes for, say, 6 people to recipes for 2 people:

In a recipe for 6 people you need 120 g flour and 270 ml of milk. How much of each ingredient does a recipe for 2 people require?

Assessment focus: Ma2, Solving numerical problems

Look for evidence of children solving problems with and without a calculator. Look for children interpreting the problem, deciding the information that is relevant and the calculations that are needed. Look for evidence of children checking how reasonable their results are by referring to the context or the size of the numbers. Look out for those children who check calculations, for example by repeating the calculation with a calculator or by using inverses. Look for children who estimate, using approximations to check results are reasonable.

Ob	jectives	Assessment for Learning
Ch	ildren's learning outcomes are emphasised	
•	Tabulate systematically the information in a problem or puzzle; identify and record the steps or calculations needed to solve it, using symbols where appropriate; interpret solutions in the original context and check their accuracy I can record the calculations needed to solve a problem and check that my working is correct	What could you draw to help you solve this? Does your answer make sense? How do you know you have identified the maximum number of intersections for 5 streets? Explain how making a table could help you to solve this problem. Parveen has the same number of 20p and 50p coins. She has £7.00. How many of each coin does she have?
•	Explain reasoning and conclusions, using words, symbols or diagrams as appropriate I can talk about how I solve problems	[Give children a completed table, e.g. for the number of handshakes made between a given number of people.] What does this table represent? How would you explain this table to other children?
•	Solve multi-step problems, and problems involving fractions, decimals and percentages; choose and use appropriate calculation strategies at each stage, including calculator use I can work out problems involving fractions, decimals and percentages using a range of methods	Find another way of expressing: 175% 33 ¹ / ₃ % 1 ¹ / ₄ Explain how you would solve these problems. Would you use a calculator? Why or why not? 185 people go to the school concert. They pay £1.35 each. How much ticket money is collected? Programmes cost 15p each. Selling programmes raises £12.30. How many programmes are sold?
•	Use knowledge of place value and multiplication facts to 10 × 10 to derive related multiplication and division facts involving decimals (e.g. 0.8 × 7, 4.8 ÷ 6) I can use place value and my tables to work out multiplication and division facts for decimals	What multiplication table does this image represent? How do you know? What other numbers will you see in the boxes outside? 4.2

•		What do you expect the mean length to be? Why?
	integers and decimals, to multiply and divide integers and decimals by a one-digit integer, and to multiply two-digit and three-digit integers by a two-digit integer	Make up an example of a calculation involving decimals that you would do in your head, and one that you would do on paper.
	I can use efficient written methods to add, subtract, multiply and divide whole numbers and decimals	Write in the missing digit. The answer does not have a remainder.
		3 8
•	Use a calculator to solve problems involving multi-step calculations	Here is a set of instructions on cards for using a calculator to solve a problem. Put the cards in the
	I can, when needed, use a calculator to solve problems	correct order. What is the answer to the problem? Is it a sensible answer?
		Write in the missing number: $50 \div \square = 2.5$
•	Express a larger whole number as a fraction of a smaller one (e.g. recognise that 8 slices of a 5-	What clues did you look for to cancel these fractions to their simplest form?
	slice pizza represents $^8/_5$ or $1^3/_5$ pizzas); simplify fractions by cancelling common factors; order a set of fractions by converting them to fractions	How do you know when you have the simplest form of a fraction?
	with a common denominator I can write a large whole number as a fraction of	Karen makes a fraction using two number cards. She says,
	a smaller one, simplify fractions and put them in order of size	'My fraction is equivalent to $^1/_2$. One of the number cards is 6.'
		What could Karen's fraction be?
		Give both possible answers.
•	Relate fractions to multiplication and division (e.g. $6 \div 2 = \frac{1}{2}$ of $6 = 6 \times \frac{1}{2}$); express a quotient as a fraction or decimal (e.g. $67 \div 5 = 13.4$ or	Harry said: 'To calculate 10% of a quantity you divide it by 10, so to find 20% of a quantity you must divide by 20.' What is wrong with Harry's statement?
	13 ² / ₅); find fractions and percentages of whole- number quantities (e.g. ⁵ / ₈ of 96, 65% of £260)	Explain how you would solve this problem:
	I can find fractions and percentages of whole numbers	There are 24 coloured cubes in a box. Three quarters of the cubes are red, four of the cubes are blue and the rest are green.
		How many green cubes are in the box?
		One more blue cube is put into the box. What fraction of the cubes in the box is blue now?

•	Solve simple problems involving direct proportion by scaling quantities up or down	Two rulers cost 80 pence. How much do three rulers cost?
	I can scale up or down to solve problems	Here is a recipe for pasta sauce.
		Pasta sauce 300 g tomatoes 120 g onions 75 g mushrooms
		Josh makes the pasta sauce using 900 g of tomatoes. What weight of onions should he use? What weight of mushrooms?
		A recipe for 3 portions requires 150 g flour and 120 g sugar. Desi's solution to a problem says that for 2 portions he needs 80 g flour and 100 g sugar. What might Desi have done wrong? Work out the correct answer.
•	Participate in a whole-class debate using the conventions and language of debate, including	How might we set about solving this problem on percentages? What ideas do you have?
	Standard English I can take part in a debate	What are the advantages and disadvantages of multiplying the two numbers like this? Could you use a more efficient method?

Year 6 Block E: Securing number facts, calculating, identifying relationships

Unit 2

Learning overview

Contained in this learning overview are suggested assessment opportunities linked to the assessment focuses within the Assessing Pupils' Progress (APP) guidelines. As you plan your teaching for this unit, draw on both these suggestions and alternative methods to help you to gather evidence of attainment or to identify barriers to progress that will inform your planning to meet the needs of particular groups of children. When you make a periodic assessment of children's learning, this accumulating evidence will help you to determine the level at which they are working. To gather evidence related to the three Ma1 assessment focuses (problem solving, reasoning and communicating) it is important to give children space and time to develop their own approaches and strategies throughout the mathematics curriculum, as well as through the application of skills across the curriculum.

In this unit the illustrated assessment focuses are:

- Ma1, Problem solving
- Ma2, Fractions, decimals, percentages, ratio and proportion
- Ma2, Solving numerical problems

Children **solve problems** in different contexts. They identify and record the calculations needed, **interpreting** the solutions back in the original context and checking their accuracy. They **use symbols** where appropriate to **explain their reasoning**. For example, they work out how many different flights there would be connecting two, three and four airports if each airport is connected by return flights. They sketch a diagram to help to make sense of the problem. They tabulate information and look for patterns. They predict how many flights will be needed for five airports, then six, then ten, testing their predictions. They find a general rule and express it in words, then using symbols.

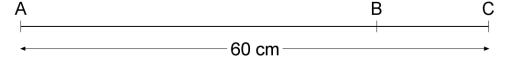
Assessment focus: Ma1, Problem solving

Look for evidence of children explaining problems in their own words to clarify what is involved, and representing problems using number sentences and diagrams. Look for children identifying each of the calculations that should be performed to solve a numerical problem. Look out for children who start with a simple case: for example, starting with two airports then three airports, when they investigate how many different flights would be needed to connect different numbers of airports. Look for evidence of children checking their results and ensuring that they make sense in the context of the original problem.

Children relate fractions to multiplication and division. They express 18 as $1^{1}/_{2}$ of 12, or 500 ml as $^{4}/_{5}$ of 400 ml. They simplify fractions by cancelling common factors. They divide the numerator and the denominator of, say, $^{14}/_{35}$ by 7 to simplify it to $^{2}/_{5}$. They order fractions by converting them to fractions with a common denominator or by using a calculator to find the decimal equivalents. For example, they order $^{3}/_{5}$, $^{2}/_{3}$ and $^{7}/_{15}$ by converting them to equivalent fractions with a common denominator. Alternatively, they use a calculator to change the fractions to decimal numbers, rounding the decimal numbers as necessary, and

considering the position of the decimal numbers on the number line. Children use similar strategies to find a fraction that lies between two given fractions, such as between $^2/_3$ and $^4/_5$. They investigate problems such as: Which would you rather have: $^7/_9$ or $^4/_5$ of the prize money in the school raffle?

Children identify **equivalent fractions**, decimal numbers and percentages. They recognise that $^{1}/_{10} = 10\%$ and $^{1}/_{5} = 20\%$, so $^{3}/_{5} = 60\%$. They shade given percentages of shapes by thinking of the percentage as a fraction. They work out, say, that 45 out of 60 is equivalent to $^{3}/_{4}$ or 75%, so that 45 is 75% of 60. They find fractions and percentages of whole-number quantities.


Assessment focus: Ma2, Fractions, decimals, percentages, ratio and proportion

Look for evidence of children recognising equivalence between simple fractions, decimal numbers and percentages such as $^{1}/_{10}$, 0.1 and 10%, and beginning to convert other fractions into tenths and hundredths in order to find equivalent decimal numbers and percentages.

Children use the vocabulary of **ratio** and **proportion** to describe the relationships between two quantities. They work out the required quantities for a recipe for seven people when given the quantities for two people. They study repeating bead patterns such as three red, two blue, three red, two blue, ... and work out how many blue beads are needed for 15 red beads. They solve problems such as:

Two letters have a total weight of 120 grams. One letter weighs twice as much as the other. Write the weight of the heavier letter.

The distance from A to B is three times as far as from B to C. The distance from A to C is 60 centimetres. Calculate the distance from A to B.

There is 60 g of rice in one portion. How many portions are there in a 3 kg bag of rice?

A packet contains 1.5 kilograms of guinea pig food. Remi feeds her guinea pig 30 grams of food each day. How many days does the packet of food last?

There are 45 children at the gym club. There are two boys for every three girls. How many boys are at the gym club?

Assessment focus: Ma2, Solving numerical problems

Look for children who solve simple ratio problems. Look for children who solve them by scaling up or by using trial and improvement. For example, when solving the problem 'Two letters have a total weight of 120 grams. One letter weighs twice as much as the other. What is the weight of the heavier letter?', they might use 10 + 20 = 30, 20 + 40 = 60, 30 + 60 = 90 and 40 + 80 = 120. Look out for those children who begin to use multiplication to solve ratio problems. In this example, they might recognise that the weight of the heavier letter is $^2/_3$ of the combined weight, and calculate $120 \div 3 \times 2$.

Objectives		Assessment for Learning	
C	hildren's learning outcomes are emphasised		
problem or puzzle; identify and or calculations needed to solve where appropriate; interpret so	Tabulate systematically the information in a problem or puzzle; identify and record the steps or calculations needed to solve it, using symbols where appropriate; interpret solutions in the	Compare your table or diagram with those of others around you. Discuss the different representations you have used. Which do you think is more effective?	
	original context and check their accuracy I can record the calculations needed to solve a	Explain how making a table could help you to solve this problem.	
problem and check that my working is co	problem and check that my working is correct	30 children are going on a trip. It costs £5 including lunch. Some children take their own packed lunch. They pay only £3. The 30 children pay a total of £110. How many children take their own packed lunch?	
•	Explain reasoning and conclusions, using words, symbols or diagrams as appropriate	Give me a sentence that explains the general rule.	
	I can talk about how I solve problems	Can you write that algebraically (using symbols)?	
•	Use a calculator to solve problems involving multi- step calculations I can work out problems involving fractions, decimal numbers and percentages, using a range of methods	Sam used a calculator to work out 15% of £40, and got the answer of £5.50. How would you have	
		tackled this problem? What might Sam have done wrong?	
		Explain how to use your calculator to solve this problem:	
		50 000 people visited a theme park in one year. 15% of the people visited in April and 40% of the people visited in August. How many people visited the park in the rest of the year?	
		Write in the missing digit: □92 ÷ 14 = 28	
•	Express a larger whole number as a fraction of a	What fraction of 6 is 3? What fraction of 6 is 6?	
	smaller one (e.g. recognise that 8 slices of a 5- slice pizza represents $^{8}/_{5}$ or $1^{3}/_{5}$ pizzas); simplify	What fraction of 9 is 6? What fraction of 90 is 60?	
	fractions by cancelling common factors; order a	Write a fraction that is larger than ² / ₇ .	
	set of fractions by converting them to fractions with a common denominator	Which is larger: ¹ / ₃ or ² / ₅ ? Explain how you know.	
	I can write a larger whole number as a fraction of a smaller one, simplify fractions and put them in order of size		
•	Relate fractions to multiplication and division (e.g.	What is $^{1}/_{3}$ of 9, 12, 15,? How did you work it out?	
		What is the answer to $^{1}/_{3} \times 15$? To $15 \times ^{1}/_{3}$? How did you work it out?	
	quantities (e.g. ⁵ / ₈ of 96, 65% of £260)	What is fifty per cent of £20?	
	I can find fractions and percentages of whole numbers	What is two-thirds of 66?	
	numbers	What is three-quarters of 500?	

•	Express one quantity as a percentage of another (e.g. express £400 as a percentage of £1000); find equivalent percentages, decimals and fractions I can work out a quantity as a percentage of another and find equivalent percentages, decimal numbers and fractions	What is twenty out of forty as a percentage? Make up some more questions like this for me to answer. You must tell me whether I am right or wrong. What percentage of £8 is £2? What percentage of £4 is £16? Tell me two amounts where one is 25% of the other. Now give me two amounts where one is 5% of the other. What about 40?%
		Put a ring around the fraction which is equivalent to forty per cent. $ \frac{1}{40} $ $ \frac{40}{60} $ $ \frac{4}{10} $ $ \frac{1}{4} $ $ \frac{1}{400} $
•	Solve simple problems involving direct proportion by scaling quantities up or down I can solve problems using ratio and proportion	A recipe for three people needs 75 g of butter. How much butter do you need for two people? Eight people? Explain how you would solve these problems. Peanuts cost 60p for 100 grams. What is the cost of 350 grams of peanuts? Raisins cost 80p for 100 grams. Jack pays £2 for a bag of raisins. How many grams of raisins does he get?
•	Understand and use a variety of ways to criticise constructively and respond to criticism I can respond positively to the ideas of others and offer my own ideas	Suggest ways in which Peter could improve his method for finding 5% of a quantity. Look at this recipe for two people. Mary has suggested a way of finding the quantities needed for five people. Her method is more efficient than your method. Try to use Mary's method to adapt this recipe for three people; for four people.

Year 6 Block E: Securing number facts, calculating, identifying relationships

Unit 3

Learning overview

In this learning overview are suggested assessment opportunities linked to the assessment focuses within the Assessing Pupils' Progress (APP) guidelines. As you plan your teaching for this unit, draw on these suggestions and alternative methods to help you to gather evidence of attainment or to identify barriers to progress that will inform your planning to meet the needs of particular groups of children. When you make a periodic assessment of children's learning, this accumulating evidence will help you to determine the level at which they are working. To gather evidence related to the three Ma1 assessment focuses (problem solving, reasoning and communicating), it is important to give children space and time to develop their own approaches and strategies throughout the mathematics curriculum, as well as through the application of skills across the curriculum.

In this unit the illustrated assessment focuses are:

- Ma1, Communicating
- Ma2, Fractions, decimals, percentages, ratio and proportion
- Ma2, Solving numerical problems

Children draw on their knowledge of multiplication and division facts and of place value to work out mentally calculations involving fractions, decimals or percentages. They use jottings where appropriate to respond to questions such as:

Subtract nought point seven five from six.

Estimate the value of nine point two multiplied by two point nine.

Multiply eight point seven by two.

What is one-half added to three-quarters?

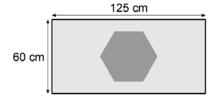
What is three-fifths of forty pounds?

What is fifty per cent of twenty pounds?

What is ninety-nine per cent of two hundred?

Children consolidate and extend their use of **efficient written methods**. They use standard column procedures to add and subtract integers and decimals, and to multiply two- and three-digit integers by a one-digit or two-digit integer; they extend division to dividing three-digit by two-digit integers.

Children understand **equivalence** and simplify fractions to their **lowest form**. They **compare** and **order fractions**, **decimals and percentages**.


Assessment focus: Ma2, Fractions, decimals, percentages, ratio and proportion

Look for evidence of children's understanding of equivalent fractions. Look for children who choose to multiply the numerator and denominator by the same number to generate equivalent fractions and relate this to previous work with fraction walls. Look for children who are beginning to divide the numerator and denominator by a common factor to simplify the fractions they create as they solve problems. Look out for children who are beginning to reduce a fraction to its simplest form.

Look for evidence of children's understanding of the relative size of fractions. Look for evidence of children beginning to put fractions with different denominators into order. Look as well for children who understand place value in decimals and are beginning to order a set of decimals in which there is a mixture of numbers with one, two or three decimal places.

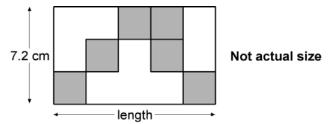
They continue to identify and record the calculations needed to solve problems. They **interpret** solutions in the original context and check their accuracy. They use symbols where appropriate to **explain their reasoning** and conclusions. Children **solve multi-step problems** by breaking each problem down into steps, identifying and recording the calculation needed for each step. They decide whether to use a written method or a calculator to solve problems such as:

20% of the area of this flag is blue. What area of the flag is blue?

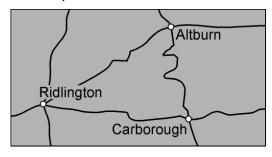
A shop has a sale offering a 20% discount. A cooker normally costs £362. How much will it cost in the sale?

A 250 g box of washing powder costs £1.48. A 1.1 kg box of the same washing powder costs £7. Which box gives the better value for money?

50 000 people visited a theme park in one year. 15% of the people visited in April and 40% of the people visited in August. How many people visited the park in the rest of the year?


What is the total cost of 3 spades at £9.55 each and 2 buckets at £4.73 each?

Assessment focus: Ma1, Communicating


Look for evidence of children presenting information in a clear and organised way. Look out for children who begin by considering how to record systematically, from the start, to help reveal patterns in results, predict further results or check that each step in a problem has been solved.

Children use the **vocabulary of ratio and proportion** to describe the relationships between two quantities. They begin to use ratio notation. For example, from the knowledge that orange paint is made from 3 tins of red paint to 2 tins of yellow paint, children write the ratio of red paint to yellow paint as 3:2, They work out, say, that if they have 21 tins of red paint then they will need 14 tins of yellow paint to make orange paint. They solve problems such as:

Here is a rectangle with six identical shaded squares inside it. The width of the rectangle is 7.2 centimetres. Calculate the length of the rectangle.

This map has a scale of 1 cm to 6 km.

The road from Ridlington to Carborough measured on the map is 6.6 cm long. What is the length of the road, in kilometres?

Sapna makes a fruit salad using bananas, oranges and apples. For every one banana, she uses two oranges and three apples. Sapna uses 24 fruits. How many oranges does she use?

Cheddar cheese costs £7.50 for 1 kg. Marie buys 200 grams of cheddar cheese. How much does she pay?

Cream cheese costs £3.60 for 1 kg. Robbie buys a pot of cream cheese for 90p. How many grams of cream cheese does he get?

Assessment focus: Ma2, Solving numerical problems

As they solve simple problems involving ratio and direct proportion, look for children who use diagrams or trial and improvement methods and those children who are beginning to calculate. As they solve different types of problem, look for evidence of children recording the calculations they perform in each step and using this to check the approach they used, as well as the solution. Look for children who choose to use inverse operations to check calculations or who calculate an approximate answer to check their solution.

Objectives	Assessment for Learning
Children's learning outcomes are emphas	ised
Tabulate systematically the information problem or puzzle; identify and record steps or calculations needed to solve it using symbols where appropriate; intersolutions in the original context and characterized their accuracy I can record the calculations needed to solve a problem and check that my work is correct.	the life? When would you use them to explain a calculation? eck What is your first step going to be in solving this puzzle? Explain how making a table could help you to solve
Solve multi-step problems, and problem involving fractions, decimals and percentages; choose and use approprical calculation strategies at each stage, including calculator use I can work out problems involving fract decimals and percentages, using a range methods	you would find: entirely in your head using jottings using a written method
Use knowledge of place value and multiplication facts to 10 × 10 to derive related multiplication and division facts involving decimals (e.g. 0.8 × 7, 4.8 ÷ 0 I can use place value and my tables to out multiplication and division facts	If you know $42 \div 6 = 7$, what else do you know?
Use efficient written methods to add ar subtract integers and decimals, to multiand divide integers and decimals by a digit integer, and to multiply two-digit a three-digit integers by a two-digit integer. I can use standard written methods to subtract, multiply and divide whole nurand decimals.	problem without using a calculator. Shenaz buys a pack of 24 cans of cola for £6.00. add,

•	Use a calculator to solve problems involving multi-step calculations	What steps would you take to work out these problems?
	I can work out problems involving fractions, decimals and percentages using a calculator	Some children do a sponsored walk.
		Jason is sponsored for £1.25 for each lap.
	Calculator	He does 23 laps. How much money does he raise?
		Lynne wants to raise £200.
		She is sponsored for £6.50 for each lap. What is the least number of whole laps she must do?
		A calculator shows 19.42857142 What answer would you give if it related to pounds, metres, litres, hours?
		Write in the missing digits: 323 x □7 = 15 18□
•	Express a larger whole number as a fraction of a smaller one (e.g. recognise that 8 slices of a 5-slice pizza represents $^8/_5$ or $1^3/_5$ pizzas); simplify fractions by cancelling common factors; order a set of fractions by converting them to fractions with a common denominator	What do the fractions $^{6}/_{9}$, $^{14}/_{21}$ and $^{18}/_{27}$ have in common? Arrange these numbers in order: $1^{3}/_{4}$, $^{15}/_{8}$, 1.6
		with a calculator
		without a calculator.
		Which way of working do you prefer? Why?
	I can write a large whole number as a fraction of a smaller one and simplify fractions and put them in order of size	
•	Relate fractions to multiplication and division (e.g. $6 \div 2 = \frac{1}{2}$ of $6 = 6 \times \frac{1}{2}$); express a quotient as a fraction or decimal (e.g. $67 \div 5 = 13.4$ or $13^2/_5$); find fractions and percentages of whole-number quantities (e.g. $\frac{5}{8}$ of 96, 65% of £260) I can find fractions and percentages of whole numbers	The result of dividing one number by another is $4^3/_4$. What were the two numbers? Are there any other possibilities?
		Explain the steps you would take to find 35% of an amount without a calculator.
		How would you find 35% of an amount using a calculator?
	mole namedie	Three-quarters of a number is 48. What is the number?
		What is twenty per cent of sixty pounds?
		What is two per cent of three hundred?
•	Express one quantity as a percentage of another (e.g. express £400 as a percentage of £4000) find a guide last percentage	Organise these numbers into two or more groups, giving reasons for your grouping:
	of £1000); find equivalent percentages, decimals and fractions	40%, 125%, 0.4, ⁵ / ₄ , ² / ₅ , 1.25.
	I can work out a quantity as a percentage of another and find equivalent percentages,	Add at least one more fraction to each of your groups.
	decimals and fractions	Circle the two fractions that are equivalent to 0.6.
		⁶ / ₁₀ ¹ / ₆₀ ⁶⁰ / ₁₀₀ ¹ / ₆
		Write in the missing numbers.
		30% of 60 is □.
		30% of □ is 60.

Solve simple problems involving direct Six cakes cost one pound eighty. How much do ten proportion by scaling quantities up or down cakes cost? I can solve problems using ratio and Here is part of a number line. Write the two missing numbers in the boxes. proportion 960 980 In a country dance there are 3 boys and 2 girls in every line. 42 boys take part in the dance. How many girls take part? For a different dance there are 45 children. How many boys are there? Let's discuss ideas for solving this problem. Use a range of oral techniques to present persuasive arguments What links can you see between fractions and I can discuss mathematical ideas and ratios? persuade others